
ITIL v3 and your CMDB: using actionable
federation to create a configuration
management system
White paper

Table of contents
Introduction . 2
What is actionable federation? . 3
Key requirements for actionable federation . 3

Requirement #1: service data metamodel . 4
Requirement #2: data source registry . 6
Requirement #3: CI identity reconciliation . 6
Requirement #4: dynamic query . 6
Requirement #5: transformation . 8

Actionable federation advantages . 8
Actionable versus view-only federation . 8
Federation economies of scale . 10
Actionable federation as a foundation for automation . 10

Practical considerations . 11
Conclusion . 11

Data and
Information
Sources and
Tools

Information
Integration
Layer

Data Integration

Introduction
IT initiatives such as IT-business alignment, service man -
agement, data center transformation and application
quality are driving IT organizations to pursue greater
information transparency across management domains,
using the perspective of services provided to the busi -
ness as a common context. The IT Infrastructure Library
(ITIL) Version 3 provides a practical response to this
need with the concept of a configuration management
system (CMS).

A CMS creates a common view of business services by
providing access to service information across special -
ized IT management silos, thus facilitating an IT organi -
za tion’s transformation from a focus on technology to a
focus on business outcomes driven by business services.
Rather than creating and maintaining a single mono -
lithic configuration management database (CMDB)
that physically stores all service information, a feder -
ated CMS features an integrated CMDB that cannot
only store configuration items (CIs) and model their
service relationships, but also dynamically access other
data sources to provide all IT management domains
with a more complete, common understanding of

business services. Thus the integrated CMDB provides
a single point of access to multiple federated data
sources without becoming the single repository. By
using a federated approach, IT organizations can
quickly access current information across teams and
tools in a common service context, resulting in faster,
better, business-aware decisions that improve business
service quality and reduce cost.

In a federated CMS, the integrated CMDB uses a set
of federation services that facilitate queries between
clients (users and applications that request service
information from the CMS) and external, autonomous
data sources that maintain additional information
about the configuration and management of services.
Federation services are tightly coupled with the service
data model in the integrated CMDB so they can
dynamically associate data in external data sources
(extended service data) to the CIs physically stored
in the integrated CMDB (core service data). Thus,
the integrated CMDB provides CMS clients with a
seam less, single point of access to service information
that may be distributed across multiple otherwise-
incompatible systems.

2

Figure 1. Whereas the CMDB
is characterized as a database,
a configuration management
system includes tools for
information integration,
knowledge processing and
presentation. The integrated
CMDB provides a unified point
of access to information from
a variety of sources.

Presentation
Layer

Asset
Management

View

Configuration
Lifecycle

View

Technical
Configuration

View

Quality
Management

View

Service
Desk
View

Change
and Release

View

Knowledge
Processing
Layer

Reporting
Performance
Management

Modeling Monitoring
Query
and

Analysis

CMDBs Platform
Configuration

Tools

Software
Configuration
Management

Discovery,
Asset

Management
and Audit

Tools

Enterprise
ApplicationsStructured

Definitive
Media
Library

Project
Documentation

Project
Software

Integrated CMDB

Data
Reconciliation

Data
Synchronization

Extract,
Transform,

Load
Mining

Common Process
Data and

Information Model

Metadata
Management

Schema
Mapping

What is actionable
federation?
A key requirement for increasing value from a feder -
ated CMS is verifying that the information it provides
is actionable, i.e., usable by applications and users to
make decisions and take action that improves business
outcomes. With an actionable federation approach,
federated information is accessed and used just like the
application’s own native data. The key to action able
federation is a combination of transparency and context.

Behind the scenes, queries from client applications
involving CMS data are directed to the integrated
CMDB, which in turn queries both the physically stored
data in the integrated CMDB and federated data in
external sources. The physical location of the federated
data is transparent to the client application. Query
results are then delivered to the client application in
context of its own data model and user interface so
they can be programmatically consumed, displayed,
sorted and acted upon by the client application’s
business logic.

Thus, actionable federation allows IT specialists from
one domain (e.g., network management) to use their
familiar tools to access information from data sources in
other IT domains (e.g., application management) with -
out learning how to use other interfaces. As far as they
can tell, the application they work with every day now
simply has a richer set of information available to it.

Key requirements for
actionable federation
Actionable federation requires CMS federation services
that work together to provide both common service con-
text and coordination of information access between
clients and federated data sources. To better understand
requirements for how CMS federation services work
together, let’s look at a travel website analogy.

Arranging a trip has been made far simpler and more
powerful through travel websites such as Expedia,
Travelocity and Orbitz. Any one of these sites provides
a single logical information source that federates
across many disparate sources, from airline, hotel
and rental car systems to street maps, attractions and
activities. A single query to the travel website returns
a coordinated set of answers spanning air, car, hotel
and even sightseeing attractions. These results can be
sorted, reworked based on new parameters such as
different travel dates, and ultimately transacted upon.

Just as the travel website provides a single point of
query about virtually any aspect of your trip, CMS
federation does the same for business services, from
infrastructure components to applications, detailed
configurations to specific management data, regard -
less of where and how that information is indepen -
dently managed and stored. Now let’s focus on some
of the underlying capabilities that make it work.

3

Figure 2. With actionable
federation, rich service data from
a variety of sources is delivered
within the user interface and
data model context of client
applications. Client applications
and users do not need to know
where the external information
resides.

Business
service

automation

Business
service

management

LDAP

Outsourcer’s
CMDB

Extended service data

SVC owner

End-user
experience

Configuration

Registry
setting

Scheduled
change

Federation

Integrated
CMDB

Project and
portfolio

Application
quality

Service
desk Asset

Your environment

Discovery

Client (consumer)

Core service data

Owne
rs

SL
As

J2
EE

UNIX
Clie

nts

W
ANs

SA
Ns

User
 id

en
titi

es

Cha
ng

es

Inc
ide

nts

Ev
en

ts
Lic

en
se

usa
ge

Pro
jec

ts

Cos
ts

SL
A st

atu
s

Com
pli

an
ce

 st
atu

s

Se
cu

rity
 st

atu
s

Configuration data Management data Processed data

®

Client integration

Data sources

• Common service context. The travel site can make
sense of different information from different vendors
by relating it to the concept of a “trip.” It understands
that a trip can have multiple components including
flights, rental cars, hotels and attractions. It under -
stands that flights have certain attributes such as
duration (measured in hours and minutes) and fare
classes. And it knows important ways in which infor -
mation about one trip component relates with another,
so it can coordinate your car pickup time with your
flight arrival time, or find a hotel close to a landmark.

• Data source registry. The travel site doesn’t store data
about all the flights, car rentals and hotels available,
but it knows where to look. It has a registry of infor -
mation needed to extract data from data sources for
airlines, car rental companies, hotels and more.

• Common reference points. To find a flight and a
hotel for your desired destination, the travel site uses
common reference points such as cities and street
addresses to look up flights, hotels, cars and attrac -
tions in external databases managed by airlines,
hotels and cars. What the user enters may not be
exactly what these external databases use, so recon -
ciliation between reference points is needed. For
example, if the user’s query specifies “San Francisco,”
the travel site will need to reconcile to airline systems’
records of flights with airport code = “SFO.” Or
if a zip code is provided, it may reconcile to hotel
systems’ properties with addresses containing the
nearest three zip codes.

• Query. Using its data model for a “trip” service, the
travel site helps a user compose a query with valid
structure and parameters (e.g., travel dates based on
a web calendar); parses and translates that query
into different queries understood by all external air -
line, car and hotel systems; submits the queries to
each data source; and then gathers the results and
returns them as a single answer to the user.

• Translation. If the travel-site user specifies a hotel
room with “high-speed Internet access,” the travel
site may need to translate this term between different
hotel systems’ representation of this amenity. Perhaps
it may need to query Hilton for “Internet = yes” and
Marriott for “in-room Internet” = yes. No matter how
hotel systems format their data, translation allows the
user to use a single term, and the travel site to display
all the results in a common apples-to-apples format,
so it is easy for the user to understand and act on.

The analogy above highlights the fundamental
importance of five actionable federation requirements.

Requirement #1: service data
metamodel
Just as a travel site maintains a model for information
about a “trip” as its common service context across
the many systems it communicates with, an integrated
CMDB needs a common model of information about
a business service that spans its physically stored data
and federated data sources. With actionable federa -
tion, the federation service that creates and maintains
models of both core (physically stored) and extended
(federated) service data is referred to as a “service
data metamodel.”

A service data metamodel doesn’t hold any data itself.
Rather, it describes the structure and format of both
core service data stored in the integrated CMDB plus
extended service data available in federated data
sources—and how they relate to each other. In the
case of core service data, the service data metamodel
determines the actual data model instance in the inte -
grated CMDB; that is, it sets up how the integrated
CMDB will accept, store, manage and understand
CI data. For extended service data, it determines
how data that is dynamically accessed from external
repositories will relate to CI data stored in the integrated

4

The close interplay between the service
data metamodel and the integrated CMDB
data model is one reason why federation
services and an authoritative integrated
CMDB should be tightly coupled: it creates
a unified model for understanding core and
extended service information.

CMDB. For example, the service data metamodel may
determine that performance and availability data may
relate to infrastructure CIs, but not people CIs. This
close interplay between the service data metamodel
and integrated CMDB data model is one reason why
federation services and the integrated CMDB should
be tightly coupled: It creates a single model for under -
standing core and extended service information.

Of course, a service data metamodel cannot start out
as a comprehensive universal data model for all of
IT management. But it is a central place where new
management data types can be incorporated as they
need to be shared. As process maturity and data
sharing among IT management domains expands, and
more data is selected for cross-domain access, the
service data metamodel expands with it, creating a
valuable, strategic asset in an IT organization’s ability
to work across teams to improve service quality and
reduce cost and risk.

By using interrelated CIs stored in the integrated CMDB
as the reference points for federation, users and man -
agement applications can quickly find data related not
just to a single CI, but also related CIs, from a business
service to an application and down to a network port.

For example, if a change management application user
wants to understand the impact of a change to an SAP
Financials application server, she can issue a single
query about “SAP Financial application server and
related CIs” and have the integrated CMDB do the
work of identifying which related CIs to include in
queries to federated data sources.

Getting this core service information right in the inte -
grated CMDB is fundamental to an effective CMS,
and why dependency mapping is worth special
consideration.

Dependency mapping
One reason behind many of the failures of early CMDB
efforts was the lack of mature technology to create and
maintain service dependency maps and a reliance on
highly manual methods of CMDB population. Out-of-
date, inaccurate CI information lacking the context of
relationships to applications and services often led to
a lack of confidence in the CMDB project and eventual
failure to adopt. To properly plan for and execute soft -
ware changes, for example, the CMDB should be able
to render details such as database tablespace settings
and J2EE sockets of custom applications, and under -
stand the impact relationships between components.

5

Figure 3. The service data
metamodel maintains data
relationships between CI data
physically stored in the integrated
CMDB and extended data in
federated data sources.

Project and
portfolio

Application
quality

Service
desk

Asset Business
service

automation

Business
service

management

LDAP Outsourcer’s
CMDB

RFC

Known errors

Problem

Incident

State

Performance

Availability

Route

Socket

Container

SW license

Contract

Cluster component

J2EE managed object

Network resources

Database

Software element

Cluster component

Customer

LOB

Process

Application

Owner

SAP

Oracle

Windows

UNIX

Host

Load balancer

Router

RAS

Business service

Service management Operations System Link Business Asset

®

Application dependency mapping software is a power -
ful class of auto-discovery tools that probe the IT envi -
ron ment not only for software and devices, but also
the intricate details of their relationships to enable a
business service. The most important considerations
for application dependency mapping is the level of
accuracy and detail provided to the integrated CMDB,
and the ability of the tool to dynamically map what it
finds to applications and services.

To maintain an accurate and useful model of the IT
environment, several capabilities are important. First,
the tool should provide discovery users with fine-grained
control over the discovery logic to discover custom and
legacy applications as well as more accurately discover
packaged applications. Second, automated rules for
maintain ing mappings are important to verifying that
the integrated CMDB’s service models of discovered
infra structure and applications are accurate and
efficiently maintained.

Finally, more powerful auto-discovery solutions also
provide tools for defining impact rules that specify what
the impact to an application or service would be if a
par ticular CI were to suffer in performance or avail -
ability. This information can be used by change man -
agement to automate what-if analysis for change risk
assess ment, by operations to determine the business
severity of performance and availability events, and by
the service desk to determine incident priority.

Requirement #2: data source registry
Just as a travel website needs a data source registry to
know where and how to access the latest flight or hotel
data, a CMS needs to know where and how to access
different types of extended service data (outside the
CMDB). With actionable federation, the federation
service that creates and maintains information on
where and how to access extended service data in
federated data sources is the data source registry.

A data source registry determines which federated
data source will serve as a source of truth for which
kinds of data by mapping which classes of CIs and
management data in the service data metamodel are
owned by which federated data sources. For example,
the data source registry would know that router per -
formance status is provided by a particular network
management application. The data source registry also
contains information on how to access data from the
appropriate federated data source, such as the path to
a federation adapter.

Thus the data source registry, working in conjunction
with the service data metamodel, provides transparency:
the client system or user does not need to know what
system holds what kinds of data.

Requirement #3: CI identity
reconciliation
Just as a travel website needs common reference points
such as cities and addresses to match up a user’s query
to information in flight and hotel systems, a CMS needs
to match up a user’s query about CIs with extended
service data related to that CI in federated data sources.
With actionable federation, the federation service that
identifies one or more matches between a CI in a query
and a representation of that CI in a federated data
source is called CI identity reconciliation.

Even when multiple systems (e.g., asset management,
event management and server automation) have a
notion of the same CI in the physical world (e.g., a
server), they often don’t identify that CI in the same
manner. In our travel website example, we saw that a
user may specify “San Francisco” while an airline reser -
vation system uses the airport code “SFO.” In a CMS,
one system may refer to a server using a serial number,
another a media access control (MAC) address, and
another a host name. CI identity reconciliation is the
process of matching up the client system’s representa -
tion of a CI with a federated data source’s different
representation of that same CI.

For example, if a service desk application wants the
real-time operational status of what it knows as “blade
server XYZ,” but the event management system that
monitors operational status knows the same system as
“blade host 123,” the query about “blade server XYZ”
from the client application must be reconciled to “blade
host 123” in the federated data source in order to
obtain the operational status of the correct device.

Requirement #4: dynamic query
In our travel example, we saw how the travel site helped
the user compose a single query with a single result
from multiple data sources. Behind the scenes, the
initial query was automatically parsed, translated, sub -
mitted to the appropriate data sources and compiled
into a single result. Likewise, in order for federated
data to become actionable information in a CMS, the
information should be transparent and in context of the
action or decision being considered by the client. In
an actionable federation approach, both transparency
and context are achieved through dynamic query.

A key concept for actionable federation is that the
integrated CMDB provides a single point of query to
multiple federated data sources without becoming the
single repository. Federation services are tightly coupled
with the integrated CMDB so it can associate data in
federated data sources to the CIs represented in the
CMDB, creating a virtual data model combining the
data in the CMDB and the federated data sources.

6

Thus, the integrated CMDB can provide a seamless,
single point of access to service data distributed across
multiple systems, including the CMDB. By using federa -
tion as a broker for information exchange behind the
scenes, the user does not need to know what federated
data source holds which information. Queries are
made to the integrated CMDB which acts as a broker
to parse and direct the query (or queries) to the appro -
priate federated data sources and/or its own stored
core service data.

A query may be composed dynamically (versus static,
pre-defined queries) by a person directly using the query
tool in an integrated CMDB interface, or it may be a
query sent from within an application that is integrated
to the integrated CMDB as a client. In either case, the
service data metamodel can structure the query options
so the user can preview which data elements and
relationships they can ask of the integrated CMDB.

A dynamic query can be a single-source query where
the desired information is found in a single federated
data source, or it can be a multi-source or distributed
query, where different portions of the answer are
owned by different federated data sources. When a
query seeks information distributed across multiple fed -
erated data sources, the query is parsed and submitted
automatically to the appropriate federated data sources.
The query engine then merges the answers from all the
federated data sources into a single query result.

For example, after completion of a planned SAP patch
release to an application server, a change manager
needs to perform the verification step of the change

process. From the change record in a change manage -
ment application, the change manager issues a single
query for the operational performance of the SAP
application server and any closely related CIs:

• The query is received by the integrated CMDB which
refers to its stored SAP application server CI and
identifies several closely related CIs including a data -
base server, load balancer and Lightweight Directory
Access Protocol (LDAP) server.

• The query engine looks into the data source registry
to see which federated data sources are authoritative
for operational performance status for each of these
CIs and identifies systems for event management,
end user performance, transaction performance and
service level agreement (SLA) status.

• The query engine directs performance queries to
each of these tools for any out-of-band status for the
CIs identified by the integrated CMDB and gathers
the results.

• When all the results are gathered by the query
engine, a single merged query result is sent back
to the change management application with the
operational status for all the CIs closely related to the
SAP application server. Results are appended to the
change record’s performance verification field.

• If all the CIs are operating within normal parameters,
the change request could be closed. If an anomaly
is detected, the change manager now has detailed
information encapsulated in the change ticket to pro -
vide to the appropriate team for investigation and
faster resolution.

7

With actionable federation,
the integrated CMDB provides
a point of query to multiple
federated data sources without
becoming a single repository.

Requirement #5: transformation
In our travel example we saw how one common term,
“high-speed Internet service,” needed to be translated
to various representations of Internet service in different
hotel systems. Likewise, actionable federation provides
data translation between the service data metamodel,
client applications and federated data sources, allow -
ing the client to create queries and see results in a
common format. The federation service that translates
data between clients and federated data sources is
referred to as transformation.

For example, a technician in operations using a server
configuration tool needs to quickly see all pending
requests for change (RFCs) for a given server prior
to performing routine maintenance. Yet changes may
be stored in two different systems, one depicting RFC
status in a single field with “received,” “under review,”
“approved,” “in progress” and “complete” as possible
values while the other system uses two status fields, one
for “open” or “closed” and another field for greater
detail. Transformation allows the technician to simply
query for “pending” RFCs (as described by the service
data metamodel) and get back a single merged set of
results from both systems within his server configuration
tool. Behind the scenes, the integrated CMDB’s federa -
tion services are transforming (translating) between the
service data metamodel’s value of “pending” and the
two federated data sources’ different representations
of “open,” “approved” and “in progress.”

Transformation can be performed in a partnership
between the integrated CMDB (which holds the service
data metamodel), federation adapters (where physical
data transformation between federated data sources
and the service data metamodel is performed) and
integrations between client applications and integrated
CMDB (where physical data transformation between
the applications native data model and the service
data metamodel is performed).

The service data metamodel supplies a common struc -
ture that data is transformed to and from.

The net result of using the service data metamodel as a
common representation for data is normalization. Acting
as an Esperanto for applications and reposi tories
across the CMS federation, the service data meta -
model provides a common data structure to trans form
to and from, creating an abstraction layer between
the data structures of multiple client applications and
federated data sources. With normalization to a
common data model, any client can understand any
federated data source for any data that has been
mapped to the service data metamodel.

Actionable federation
advantages
In a CMS context, actionable federation provides
several advantages over typical integration strategies
such as point-to-point, hardwired, launch in context,
and data warehouse and replication strategies:

• Service context: By leveraging the service infrastruc -
ture context created by discovery and the integrated
CMDB, queries can automatically branch out to
include related CIs and services. By leveraging the
service data metamodel, extended service data in
federated data sources are placed in the appropriate
service context. The net result is a more intelligent,
holistic view of IT information from a business service
perspective.

• Data accuracy: Because data is accessed on demand
directly from the appropriate source of truth (federated
data source), even highly dynamic data can be as
fresh, accurate and trusted as the federated data
source itself.

• Broader, deeper information: Because a federated
CMS is virtual, even near real-time, highly granular
configuration data and management informa tion can
be made available in a highly cost-effective manner
to any person or tool with CMS access.

• Wider access: Because integrations are made to
and from the integrated CMDB in a hub-and-spoke
manner, it is possible to have many more federated
data sources and clients participate in the federation
than is feasible with point-to-point connections.

• Flexibility: Using the integrated CMDB as a hub
between client applications and federated data
sources, an IT organization can swap out one fed -
erated data source or client application for another
and only modify the integration to the integrated
CMDB, rather than rebuilding all the hardwired
point-to-point integrations that touched the replaced
system.

Actionable versus view-only
federation
To understand the power of queries, it is helpful to look
at actionable federation as a contrast to “view-only
federation.” View-only federation uses a “launch in
context” mechanism to open another application that
may have more information about a CI. With launch in
context, when a user or application requests federated
data about a CI, the federated data source correspond-
ing to that data type is launched in a separate window
and potentially opened to a screen containing more
information about the CI in the request. With this

8

approach, no extended service data is reconciled,
mapped or exchanged. There is nothing to consume
or act on by the client application.

View-only federation can be a useful approach. For
example, setup time can be minimal because there is
no query syntax or data mapping to configure. Launch
in context is also appropriate when the user needs to
interact directly with a federated data source’s appli -
cation interface—such as performing diagnostics or
logging in to a targeted device.

IT organizations should be aware of the limitations of
this approach when the goal is to act on the federated
information. The user of the client system is now looking
at a second and likely unfamiliar user interface and
data model for a separate system, so they must be

trained in how to use the federated view to find and
understand additional information about the CI. If they
wish to transfer information from the federated data
source to the client application, they may need to make
the appropriate data transformations themselves (in
their heads) and then manually cut and paste informa -
tion. And because users will be logging into sessions
and using the federated data source as an application
or tool (and not just accessing its data), there may be
added complications in managing user licensing for
an expanded group of potential federated users.

Given the limitation of launch in context, organizations
who wish to make information sharing actionable
should consider view-only federation as a supplement
to an actionable federation approach.

9

View-only federation Actionable federation

Service data metamodel No, only CI data in CMDB is modeled Yes, models CIs in CMDB and data
from federated data sources

Data source registry Yes Yes

Dynamic query No, launch in context only Yes, can also include launch in
context

CI identity reconciliation Yes, but limited to ability of each Yes, queries with parameters
federated data source’s user interface understood by federated data
to present data on requested CIs source, returns results on as many

CIs as requested

Tool transparency No, client application launches view of Yes, query results returned within the
federated data source in separate window, user interface and data model of
user must know federated data source client application
interface

Transformation No, data is view-only in separate Yes, data transformed via service
window of source application data metamodel into actionable

context for client application

Federation economies of scale
There are times when point-to-point integration makes
sense, such as when replicating data from one appli -
cation to another, or when millisecond response times
are needed to support asynchronous transactions
between the applications and when a common service
context is not needed. However, when three or more
systems need to access the same data, federation can
offer distinct economies of scale.

Federation adapters to external data sources act as
“spokes” off the integrated CMDB “hub,” so there is no
need to individually define and build each permutation
of possible integration combinations. For example, to
enable bi-directional data sharing between all combi -
nations of six different tools, traditional point-to-point
integration approaches would require 15 integration
points. This could potentially include 15 different data
transport mechanisms, 15 different CI identity reconcili -
ation setups, 15 different query methods and 15 differ -
ent translations among data models. In a fed erated
configuration, information sharing for the same 15
permutations is enabled with just six integration points.

Actionable federation as a
foundation for automation
Thus far, we have talked about actionable federation
primarily in the sense of making information actionable
to a user of a client application, e.g., in the user inter -
face and data model context of the decision or action
that the user is working on at the time. But delivering
information “from anywhere, to anywhere” in the
required context also opens the door for more fully auto -
mated action, including automatic execution of queries
and automatic action taken based on query results.

One of the largest obstacles to interoperability among
different management systems is dissimilar data models.
Because the service data metamodel and query mech -

anisms of actionable federation can normalize data to
and from a common universal model, queries can be
machine-generated, and query results can be machine-
consumable. This opens the door to embedding fed -
erated queries into automated workflows and for query
results to be automatically written into and/or processed
by other systems’ business logic as part of a larger
workflow, either with or without a user’s involvement.

Recall that in a previous example a change manage -
ment user was able to conduct a verification step of
an application release change request by querying
an application monitoring federated data source for
the performance status of the application several hours
after the release was executed. Expanding on this
scenario:

• Upon completion of a 17-step testing battery, a soft -
ware quality assurance (QA) application could auto -
matically approve the change request’s QA task and
leave a record in the change request on what testing
steps were completed, avoiding the problem of some -
one signing off on a change without following the full
QA procedure and creating a closed loop audit trail.

• Once the change request is approved, it could trigger
the execution of the change to a service automation
suite, which could provision a virtual server, install
the release, reboot the server and record the change
as completed in the change request record.

• During the time the change request specifies that sys -
tems are to be taken offline for the application release,
it could tell event management tools to suppress events
related to the offline systems to avoid unnecessary
firefighting and adjust the application’s SLA calendar
so the offline time won’t be counted against it.

Of course, actionable federation alone will not enable
all aspects of this level of automation, but the subsys -
tems used for normalized queries provides a foundation
of data mapping for such automation to be constructed.

10

Figure 4. A hub-and-spoke model
becomes increasingly more
efficient than point-to-point
integrations as more systems are
added to the CMS federation.

Business
service

automation

LDAP

Service
desk

Application
quality

BSM

Asset

Business
service

automation

BSMLDAP

Application
quality

Service
desk

Asset

Practical considerations
Implementing a CMS with actionable federation can
be far reaching, but an incremental approach can
bring value at each step while building a scalable,
highly re-usable foundation for cross-domain collabora -
tion. While there isn’t a single right answer for all
organizations on the right sequence of steps, following
are some considerations:

1. Discover and share application dependency data
with a CMDB. Even before federated data sources
are brought online, providing various IT functions
with a shared picture of application/infrastructure
dependencies will increase the chances that better
decisions will be made with regard to the service
as a whole. Be sure to choose a combination of
application dependency mapping and CMDB that
provides the level of granularity, accuracy and
currency of data needed to support your key
processes and functions.

2. Identify your authoritative data sources. Deciding
which tools are or should be systems of record for
different types of service information may be more
of a political issue than a technical one, but the
conversation can be valuable, and ultimately neces -
sary. Do you have different teams and tools manag -
ing some of the same data? Which have the right
data quality and context, as well as ongoing
processes and skills for maintaining that data?

3. Bring a federated data source online. Identify the
most critical near-term pain points and/or initiatives
that can benefit from extended service data, and set
up a process to use federated queries to one or two
authoritative federated data sources for that data.
If possible, prioritize where there are two or more
tools needing access to the same federated data

source to benefit from re-use and economies of scale.
Depending on the tools involved, the breadth of data
required, and the complexity of the federated data
source schema, setting up federated access can take
as little as a few hours or days.

4. Integrate client applications to the integrated CMDB.
Provide a greater level of transparency and action -
able use of query results. Enable CMS queries from
within the user interface of a client that regularly
needs critical federated data source data and filter
the options to focus the user on high-value queries.

5. Enable distributed queries. Once you determine an
existing process or function regularly needs answers
to questions that require compilation of data from
multiple federated data sources.

6. Embed queries in automated workflows. Identify
where high-value queries are being regularly
repeated with predictable actions taken according
to the query results and make them part of a more
fully automated action processed either directly by
the client system or through an automated runbook
tool.

Conclusion
As IT organizations take a closer look at building a
sustainable CMS, a federated approach is emerging
as the most practical and scalable method. A suc -
cessful federated approach provides both common
service context and coordination of information
between multiple data repositories and consumers
of this information. Actionable federation can then,
in turn, provide the basis for IT organizations to
deliver on key initiatives such as IT-business alignment,
service management, data center transformation and
application quality.

11

To learn more, visit www.hp.com/software
© Copyright 2008 Hewlett-Packard Development Company, L.P. The information contained herein is subject to
change without notice. The only warranties for HP products and services are set forth in the express warranty
statements accompanying such products and services. Nothing herein should be construed as constituting an
additional warranty. HP shall not be liable for technical or editorial errors or omissions contained herein. UNIX
is a registered trademark of The Open Group. Oracle is a registered U.S. trademark of Oracle Corporation,
Redwood City, California.

4AA1-9283ENW, June 2008

Technology for better business outcomes

